558 research outputs found

    Constraints on the Universe as a Numerical Simulation

    Get PDF
    Observable consequences of the hypothesis that the observed universe is a numerical simulation performed on a cubic space-time lattice or grid are explored. The simulation scenario is first motivated by extrapolating current trends in computational resource requirements for lattice QCD into the future. Using the historical development of lattice gauge theory technology as a guide, we assume that our universe is an early numerical simulation with unimproved Wilson fermion discretization and investigate potentially-observable consequences. Among the observables that are considered are the muon g-2 and the current differences between determinations of alpha, but the most stringent bound on the inverse lattice spacing of the universe, b−1 \u3e ~ 10^11 GeV, is derived from the high-energy cut off of the cosmic ray spectrum. The numerical simulation scenario could reveal itself in the distributions of the highest energy cosmic rays exhibiting a degree of rotational symmetry breaking that reflects the structure of the underlying lattice

    Two-Nucleon Systems in a Finite Volume: (II) 3S1-3D1 Coupled Channels and the Deuteron

    Get PDF
    The energy spectra of two nucleons in a cubic volume provide access to the two phase shifts and one mixing angle that define the S-matrix in the 3S1-3D1 coupled channels containing the deuteron. With the aid of recently derived energy quantization conditions for such systems, and the known scattering parameters, these spectra are predicted for a range of volumes. It is found that extractions of the infinite-volume deuteron binding energy and leading scattering parameters, including the S-D mixing angle at the deuteron pole, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with 10 fm <~ L <~ 14 fm. The viability of extracting the asymptotic D/S ratio of the deuteron wavefunction from Lattice QCD calculations is discussed.Comment: 31 pages, 17 figure

    Two-Baryon Systems with Twisted Boundary Conditions

    Get PDF
    We explore the use of twisted boundary conditions in extracting the nucleon mass and the binding energy of two-baryon systems, such as the deuteron, from Lattice QCD calculations. Averaging the results of calculations performed with periodic and anti-periodic boundary conditions imposed upon the light-quark fields, or other pair-wise averages, improves the volume dependence of the deuteron binding energy from ~exp(-kappa*L)/L to ~exp(-sqrt(2)kappa*L)/L. However, a twist angle of pi/2 in each of the spatial directions improves the volume dependence from ~exp(-kappa*L)/L to ~exp(-2kappa*L)/L. Twist averaging the binding energy with a random sampling of twist angles improves the volume dependence from ~exp^(-kappa*L)/L to ~exp(-2kappa*L)/L, but with a standard deviation of ~exp(-kappa*L)/L, introducing a signal-to-noise issue in modest lattice volumes. Using the experimentally determined phase shifts and mixing angles, we determine the expected energies of the deuteron states over a range of cubic lattice volumes for a selection of twisted boundary conditions.Comment: 20 pages, 3 figure

    Theoretical aspects of quantum electrodynamics in a finite volume with periodic boundary conditions

    Full text link
    First-principles studies of strongly-interacting hadronic systems using lattice quantum chromodynamics (QCD) have been complemented in recent years with the inclusion of quantum electrodynamics (QED). The aim is to confront experimental results with more precise theoretical determinations, e.g. for the anomalous magnetic moment of the muon and the CP-violating parameters in the decay of mesons. Quantifying the effects arising from enclosing QED in a finite volume remains a primary target of investigations. To this end, finite-volume corrections to hadron masses in the presence of QED have been carefully studied in recent years. This paper extends such studies to the self-energy of moving charged hadrons, both on and away from their mass shell. In particular, we present analytical results for leading finite-volume corrections to the self-energy of spin-0 and spin-12\frac{1}{2} particles in the presence of QED on a periodic hypercubic lattice, once the spatial zero mode of the photon is removed, a framework that is called QEDL\mathrm{QED}_{\mathrm{L}}. By altering modes beyond the zero mode, an improvement scheme is introduced to eliminate the leading finite-volume corrections to masses, with potential applications to other hadronic quantities. Our analytical results are verified by a dedicated numerical study of a lattice scalar field theory coupled to QEDL\mathrm{QED}_{\mathrm{L}}. Further, this paper offers new perspectives on the subtleties involved in applying low-energy effective field theories in the presence of QEDL\mathrm{QED}_{\mathrm{L}}, a theory that is rendered non-local with the exclusion of the spatial zero mode of the photon, clarifying recent discussions on this matter.Comment: 57 pages, 10 figures, version accepted for publication in Phys. Rev.

    Multifractal clustering of passive tracers on a surface flow

    Get PDF
    We study the anomalous scaling of the mass density measure of Lagrangian tracers in a compressible flow realized on the free surface on top of a three dimensional flow. The full two dimensional probability distribution of local stretching rates is measured. The intermittency exponents which quantify the fluctuations of the mass measure of tracers at small scales are calculated from the large deviation form of stretching rate fluctuations. The results indicate the existence of a critical exponent nc≃0.86n_c \simeq 0.86 above which exponents saturate, in agreement with what has been predicted by an analytically solvable model. Direct evaluation of the multi-fractal dimensions by reconstructing the coarse-grained particle density supports the results for low order moments.Comment: 7 pages, 4 figures, submitted to EP
    • …
    corecore